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Abstract
In this paper, we investigate the mechanics of a nanoscaled gigahertz oscillator comprising a
carbon molecule oscillating within the centre of a uniform concentric ring or bundle of carbon
nanotubes. Two kinds of oscillating molecules are considered, which are a carbon nanotube and
a C60 fullerene. Using the Lennard-Jones potential and the continuum approach, we obtain a
relation between the bundle radius and the radii of the nanotubes forming the bundle, as well as
the optimum bundle size which gives rise to the maximum oscillatory frequency for both the
nanotube–bundle and the C60–bundle oscillators. While previous studies in this area have been
undertaken through molecular dynamics simulations, this paper emphasizes the use of applied
mathematical modelling techniques, which provides considerable insight into the underlying
mechanisms of the nanoscaled oscillators. The paper presents a synopsis of the major results
derived in detail by the present authors (Cox et al 2007 Proc. R. Soc. A 464 691–710 and Cox
et al 2007 J. Phys. A: Math. Theor. 40 13197–208).

1. Introduction

The development of carbon nanotube based oscillators
originates from experiments of Cumings and Zettl [3],
who remove the cap from one end of the outer shell
of a multi-walled carbon nanotube and attach a moveable
nanomanipulator to the core in a high-resolution transmission
electron microscope. By pulling the inner core out and
releasing it back into the outer shell, they report an ultra-low
sliding frictional force, and they also observe that the extruded
core quickly and fully retracts inside the outer shell due to the
restoring force resulting from the van der Waals interaction
acting on the extruded core. These results lead Zheng and
Jiang [4] and Zheng et al [5] to investigate the sliding of
the inner shell inside the outer shell of a multi-walled carbon
nanotube with both cap removed using molecular dynamics
studies. They find that the inner core oscillates between both
ends of the outer shell and the resultant oscillatory frequency
is up to several gigahertz. Further, their results also support
the experimental findings of Cumings and Zettl [3] that the
frictional effect of the intershell sliding is very small. This
phenomenon is also confirmed by a number of other molecular
dynamics simulations, such as Legoas et al [6] and Rivera et al
[7, 8]. From an applied mathematical modelling perspective,
Baowan and Hill [9] use the continuum approach for the

Lennard-Jones potential and Newton’s second law to study the
force distribution for double-walled carbon nanotubes and the
oscillation of the inner tube inside the outer tube, assuming
that the frictional force can be neglected. They obtain an exact
analytical expression for the interaction energy between the
inner and outer tubes and the van der Waals interaction force.
This model also predicts gigahertz oscillatory frequencies as
expected for the double-walled carbon nanotube oscillators.

To create an oscillator with even higher frequency, instead
of using a nanotube Liu et al [10] employ a C60 fullerene as an
inner oscillating molecule. This idea is based on the suggestion
of Zheng et al [5] that the shorter the inner tube, the higher
the frequency. We note that the interaction between a C60

fullerene and a single-walled carbon nanotube has previously
been studied by Qian et al [11]. While Liu et al [10] focus
on the oscillation frequency, the study of Qian et al [11] is
concerned with the suction (or repulsion) of a C60 fullerene at
the vicinity of the carbon nanotube open end and the velocity of
the fullerene upon entering the nanotube. Further, issues from
both of Lui et al [10] and Qian et al [11] are studied by Cox
et al [12, 13] using elementary mechanical principles together
with the continuum approach to provide a classical applied
mathematical model for C60–carbon nanotube oscillators. In
particular, Cox et al [12] determine an analytical expression for
the suction energy of a C60 molecule upon entering a carbon
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Figure 1. Part of the bundle of N nanotubes, showing the angle
between two adjacent tubes, bundle radius R and constituent tube
radius r .

nanotube. This energy is imparted onto the C60 molecule in
terms of kinetic energy and thus induces the oscillating motion.
They also determine analytically the condition on the radius of
the carbon nanotube that will accept the C60 molecule from rest
in the vicinity of an open end of the tube. In Cox et al [13],
a mathematical model for the oscillation of the C60–carbon
nanotube oscillators is provided where the axial van der Waals
restoring force of the C60 molecule is approximated by two
equal and opposite Dirac delta functions operating at both ends
of the nanotube.

Recently, Kang et al [14] propose a new type of
nanoscaled oscillator based on a single-walled carbon
nanotube oscillating within a bundle of six similar carbon
nanotubes. Using molecular dynamics simulations, Kang et al
[14] find that the nanotube–bundle oscillator also generates
frequencies in the gigahertz range. In Cox et al [1, 2], we
extend the analysis presented in Baowan and Hill [9] and Cox
et al [12, 13] to study nanotube–bundle oscillators and also the
special case of a C60 fullerene oscillating within the bundle. We
comment that a more general definition of a bundle than that of
Kang et al [14] is adopted in Cox et al [1, 2], which is a bundle
that is assumed to comprise an integral number of N carbon
nanotubes aligned parallel to and equidistant from a common
axis, which is termed the bundle axis. The perpendicular
distance from the bundle axis to the axis of each constituent
nanotube is termed the bundle radius R. It is also assumed that
the constituent nanotubes are all of equal length 2L and radius
r and that they are evenly distributed around the bundle axis,
so that the angle subtended at the bundle axis of two adjacent
nanotubes is 2π/N (see figure 1). Noting that when N = 6,
the results for nanotube–bundle oscillators are consistent with
those shown in Kang et al [14].

In this paper, we summarize the recent work of Cox et al
[1, 2] on modelling the mechanics of nanoscaled oscillators,
which are created from a carbon molecule (carbon nanotube or

Table 1. Values of constants used in this paper.

LJ attraction (CNT–CNT) A = 15.2 eV Å
6

LJ repulsion (CNT–CNT) B = 24.1 × 103 eV Å
12

LJ attraction (C60–CNT) A = 17.4 eV Å
6

LJ repulsion (C60–CNT) B = 29 × 103 eV Å
12

Radius of (5, 5) nanotube r0 = 3.392 Å
Radius of (8, 8) nanotube r0 = 5.428 Å
Radius of (10, 10) nanotube r0 = 6.784 Å
Radius of C60 r0 = 3.55 Å

Atomic surface density of C60 η f = 0.3789 Å
−2

Atomic surface density of CNT ηt = 0.3812 Å
−2

Mass of a single carbon atom m0 = 19.92 × 10−27 kg

C60) oscillating in carbon nanotube bundles. In the following
section, we present the interaction energy between tubes
in the bundle and the total suction energies for nanotube–
bundle and C60–bundle oscillators. In section 3, we consider
the oscillatory behaviour for both oscillators, and finally in
section 4, a summary of the paper is presented.

2. Interaction energy

Using the continuum approach which assumes that carbon
atoms are uniformly distributed over the surface of the
molecule, the total interaction energy between the two
molecules can be obtained which is given by

E = η1η2

∫
S1

∫
S2

�(ρ) dS1 dS2, (1)

where η1 and η2 are the atomic densities of atoms on each
molecule, S1 and S2 denote the two surfaces, ρ is the distance
between the typical surface elements dS1 and dS2 on each
surface and � represents a potential function. Here we adopt
the six-twelve Lennard-Jones potential which has the form

�(ρ) = − A

ρ6
+ B

ρ12
, (2)

where A and B are the attractive and the repulsive constants,
respectively. The values of constants used throughout this
paper are presented in table 1. We note that the values of the
attractive and repulsive constants, namely A and B , are taken
from Girifalco et al [15].

In order to obtain the potential energy of a nanotube
bundle, we first need the energy of two parallel nanotubes.
Upon using (1) and (2), Cox et al [1] derive the analytical
expression for the interaction potential per unit length Ett of
two parallel nanotubes of radii r1 and r2, which is given in
terms of the Appell hypergeometric functions of two variables
as

Ett = 3

2
η2

t r1r2π
3α−5

[
−AF2

(
5

2
,−3

2
,

1

2
, 1, 1; − r 2

1

α2
,−4r2δ

α2

)

+ 21

32
Bα−6 F2

(
11

2
,−9

2
,

1

2
, 1, 1; − r 2

1

α2
,−4r2δ

α2

)]
, (3)

where α2 = (δ−r2)
2 −r 2

1 , δ is the distance between the central
axes of the nanotubes and F2(α, β, β ′, γ , γ ′; x, y) is an Appell
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Figure 2. Bundle radius R versus nanotube radius r for
N ∈ {3, 4, . . . , 8} [1].

hypergeometric function of two variables of the second kind as
defined in Erdélyi et al [16]. Next, assuming that the bundle
is formed from N nanotubes each of which has radius r , we
can determine the total interaction energy EB of a bundle by
summing all of the constituent interactions, namely

EB = N

2

N−1∑
k=1

Ett

(
2R sin

(
kπ

N

))
. (4)

We comment that van der Waals force is a short
range force, and therefore the interactions between tubes
in the bundle are dominated by only the nearest neighbour
interactions. As a result, the total energy for a bundle as shown
in (4) can be approximated as

EB ≈ N Ett

(
2R sin

( π

N

))
. (5)

Next, if we assume that the carbon nanotubes in a
bundle arrange themselves such that the bundle configuration
is at equilibrium (i.e. the energy is minimum), then we can
determine the bundle radius R from (5). In figure 2, we show
the relation between the radius r of the tubes forming the
bundle and the bundle radius R which minimizes the energy
EB of the system. As shown in Cox et al [1], we can estimate
the bundle radius R by the expression

R ≈ 2r + λ

2 sin(π/N)
, (6)

where λ, which is the inter-tube equilibrium spacing, varies
slightly as a function of the nanotube radius, but generally lies
in the range 3.10–3.16 Å.

In the following two subsections we consider the cases
when the bundle interacts with a single nanotube and a C60

fullerene, respectively.
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Figure 3. Bundle radius versus nanotube radius for (5, 5), (8, 8) and
(10, 10) carbon nanotubes and nanotube bundles with
N ∈ {4, 5, . . . , 10} [1].

(This figure is in colour only in the electronic version)

2.1. Tube–bundle

For a single carbon nanotube of radius r0 located with its
axis along the bundle axis and centred at a nanotube bundle
assumed infinite in length, we find that the suction energy
or the total interaction potential energy per unit length of the
single nanotube interacting with the bundle is given by

Wt = −N Ett (R), (7)

noting that N is the number of nanotubes forming the bundle
and Ett is given by (3). For a given value of r0, we
can determine from (7) the relationship between the radii of
nanotubes forming the bundle r and the bundle radius R, for
which the suction energy Wt is maximized. By showing this
relationship against the data from figure 2, we can determine
the equilibrium configurations for the interaction of the centred
nanotube and the bundle. As shown in figure 3 for (5, 5), (8,
8) and (10, 10) nanotubes, the points of intersection with the
optimal bundle configurations represent the specific values of
r and R that lead to optimized energy Wt for the nanotube for
each value of N .

Further, for the configuration of a bundle comprising
nanotubes of radii r with a nanotube of radius r0 at the centre,
the relationship between R, r and r0 can be expressed as
R ≈ r0 + r + λ, where λ is the inter-tube equilibrium spacing.
Thus combining this with (6), we may find a formula for the
radius of the constituent tubes in a bundle that maximizes the
suction energy for an oscillating tube of radius r0 as

r ≈ (r0 + λ) sin(π/N) − λ/2

1 − sin(π/N)
. (8)

We note that when N = 6, we have r ≈ r0 as expected.

3



J. Phys.: Condens. Matter 21 (2009) 144214 N Thamwattana et al

Nanotube radius (r) [Å]

B
un

dl
e

ra
di

us
(R

)
[Å

]

2 4 6 8 10 12
8

10

12

14

16

18

N=3
N=4
N=5
N=6
N=7
N=8
C60

Figure 4. Bundle radius versus nanotube radius for a C60 fullerene
and nanotube bundles with N ∈ {3, 4, . . . , 8} [2].

2.2. C60–bundle

The total suction energy of a C60 fullerene of radius r0 located
at the centre of the nanotube bundle of infinite in length is given
by

W f = −N E f t(R), (9)

where E f t is the energy for an interaction between a C60 and
a single nanotube in the bundle. Using Cox et al [13] we find
that E f t is given by

E f t(R) = 4π2r 2
0 rη f ηt

[
B

5

(
315

256
J5 + 1155

64
r 2

0 J6 + 9009

128
r 4

0 J7

+ 6435

64
r 6

0 J8 + 12155

256
r 8

0 J9

)
− A

8

(
3J2 + 5r 2

0 J3
)]

, (10)

where Jn is given in terms of the usual hypergeometric
functions F(a, b; c; z) as

Jn = 2π[
(r − R)2 − r 2

0

]n+1/2

× F

(
1

2
, n + 1

2
; 1; − 4r R

(r − R)2 − r 2
0

)
. (11)

We refer the reader to Cox et al [2, 13] for detailed derivation
of (10) and (11).

From (9) we can find for any value of N the relation
between the nanotube radius r and the bundle radius R which
optimizes the suction energy W f for the C60 fullerene (r0 =
3.55 Å), and this is shown graphically in figure 4. On the same
figure, we also show the nanotube radii versus bundle radii
data from figure 2. Again, the points where the lines intersect
represent the specific values of r and R that lead to optimized
energy for C60 fullerene for each value of N . Further, it can
be seen from figure 4 that if we consider the tube radius r only
in the range 2–12 Å then the C60–bundle oscillators can only
be constructed from N ∈ {4, 5, 6, 7}. In table 2, we present
the parameters of the oscillators which optimize the suction

Table 2. Parameters for optimized C60–nanotube bundle
oscillators [2].

Number Tube radius Bundle radius Suction energy
N r (Å) R (Å) W f (eV)

4 10.294 16.792 2.314
5 5.439 11.930 2.551
6 3.355 9.838 2.731
7 2.219 8.692 2.850

energy W f . We comment that as the suction energy is directly
converted into kinetic energy, results shown in table 2 can be
used as a guideline for constructing C60–bundle oscillators that
achieve the maximum velocity and frequency.

3. Oscillatory behaviours

In this section, we consider a molecule oscillating in the
middle of a bundle of finite length carbon nanotubes of N-
fold symmetry, and we assume that the centre of the oscillating
molecule remains on the z-axis during its motion.

3.1. Nanotube–bundle oscillators

According to the geometry of a nanotube–bundle oscillator as
shown in figure 5, the total interaction energy of the oscillating
nanotube inside a bundle is given by Etot = N E , where N
is the number of tubes in the bundle and E is the energy
of the interaction between the centred tube of coordinates
(r0 cos θ0, r0 sin θ0, z0 + Z) and a nanotube in the bundle which
has coordinates (r cos θ1 + R, r sin θ1, z1). We note here that
−L0 � z0 � L0, −L � z1 � L and Z is the distance
between the centre of the oscillating tube and the origin. Using
the Lennard-Jones potential and the continuum approach we
obtain the interaction energy E as

E = rr0η
2
t

×
∫ 2π

0

∫ 2π

0

{∫ L

−L

∫ L0

−L0

(
− A

ρ6
+ B

ρ12

)
dz0 dz1

}
dθ0 dθ1,

(12)

where ηt is the mean density of atom on a nanotube and ρ

denotes the distance between two typical surface elements on
each nanotube. We refer to Cox et al [1] and Baowan and
Hill [9] for a detailed analytical evaluation of (12).

For the total van der Waals interaction force between
the tube and the bundle we have FvdW = −∂ Etot/∂ Z =
−N(∂ E/∂ Z). Thus using (12) we plot figure 6 showing
the van der Waals force FvdW for a (5, 5) carbon nanotube
oscillating in a six-fold symmetry (5, 5) carbon nanotubes
bundle. From the figure, we see that the single carbon nanotube
has minimum energy at Z = 0 inside the bundle. By pulling
the tube away from the equilibrium configuration in either
direction, the van der Waals force tends to propel the tube back
towards the centre of the bundle, and as a result, we have an
oscillatory motion of the nanotube inside the bundle.

From figure 6, we see that when L � L0 the van der Waals
force of the oscillating tube might be approximated in terms of

4
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oscillating inside a 6-fold symmetry bundle comprising (5, 5)
nanotubes of length 2L .

step functions and formally given by

FvdW = Wt [H (Z + L + L0) − H (Z + L − L0)

− H (Z − L + L0) + H (Z − L − L0)], (13)

where H (z) is the Heaviside unit step function and Wt is the
suction energy per unit length as given by (7). Assuming that
the nanotube is initially at rest and extruded by a distance d
out of the nanotube bundle, following Baowan and Hill [9] the
resulting oscillatory frequency f can be found to be given by

f = 1

4

√
2Wt

M

( √
d

2d + (L − L0)

)
, (14)

where M is the mass of the oscillating nanotube, which is
given by M = 4πr0 L0ηt m0, where m0 is the mass of a single
carbon atom. From (14) when the extrusion distance is such
that d = (L−L0)/2 the maximum frequency is obtained which
is given by

fmax = 1

8

√
Wt

M(L − L0)
. (15)

We note that the case L = L0 gives rise to oscillations near
a stable equilibrium point, where the oscillation period is very
short and therefore the maximum frequency occurs. From a
practical point of view we need d to be measurable (i.e. dmin <

d , where dmin is a minimum extrusion distance). Further, we
require that d must be less than the length of the oscillating
nanotube 2L0. Thus, the extrusion length d = (L−L0)/2 must
satisfy dmin < d < 2L0, which gives rise to the constraints
L0 + 2dmin < L < 5L0 for the bundle length.

Next we compare our results with those of Kang et al
[14] for the scenario of a (5, 5) nanotube oscillating in a six-
fold nanotube bundle which also comprises (5, 5) nanotubes,
and both the bundle and the oscillating nanotube having the
same half-length L = L0 = 15 Å. As mentioned in Cox
et al [1] upon ignoring energy dissipations and thermal effects
during the oscillation, we find that our model with d = 6.3 Å
gives a frequency of approximately 80 GHz, which is in
reasonable agreement with the frequency of 72 GHz obtained
from the molecular dynamics studies of Kang et al [14] after
the oscillation has stabilized.

3.2. C60–bundle oscillators

From figure 6, we may observe that in the limit L0 � L, which
is the case for a C60 oscillating inside the bundle, we obtain
the peak-like forces at both ends of the bundle, which can
be estimated using the Dirac delta function, namely FvdW =
W f [δ(Z + L) − δ(Z − L)]. We note that this behaviour is
similar to that of a C60 oscillating inside a single-walled carbon
nanotube [13]. As such, the model presented in Cox et al
[13], which involves approximating the impulse-like forces
operating at both ends of the tube as Dirac delta functions, can
also be used for C60–bundle oscillators. Thus, from [13] we
have the equation for frequency of the C60–bundle oscillators,
namely

f = (2W f /m f )
1/2/(4L), (16)

where here W f is given by (9) and m f = 60m0 is the mass
of the fullerene, noting that m0 is the mass of a single carbon
atom. Using (16) with values of r , R and W f given in
table 2 for each bundle type, we plot in figure 7 the oscillatory
frequencies for various bundle oscillators, varying the bundle
length 2L. As expected from table 2, the configuration with
N = 7 gives rise to the highest frequency. However, we find

5
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Figure 7. Frequency for a fullerene nanotube bundle oscillator for
various configurations varying the bundle length 2L [2].

that the frequency obtained from a C60 oscillating in a (10, 10)
single-walled nanotube is higher than that of the C60–bundle
oscillators presented here. As described in Cox et al [2], the
higher force from the C60–nanotube oscillator is due to the fact
that the curvature of the nanotube wall matches the curvature of
the fullerene and thus a greater portion of the fullerene surface
is located at the optimal distance for van der Waals interactions.

4. Summary

In this paper we summarize some recent results on modelling
the mechanisms of a new type of nanoscaled oscillator,
which are known as carbon nanotube bundle oscillators. We
investigate two scenarios for bundle oscillators: the first has
a single-walled carbon nanotube oscillating inside the bundle;
and the second has a C60 fullerene as the inner oscillating
molecule. By using the Lennard-Jones potential together with
the continuum approach, formal mathematical expressions for
the van der Waals interaction energy and force are determined.
The results obtained can be used to predict the oscillator bundle
configuration which optimize the suction energy and therefore
leads to a maximum frequency oscillator. We emphasize that
the major contribution of the authors in this area is the use
of elementary mechanics and classical applied mathematics
to formulate explicit analytical solutions and ideal model

behaviour in a scientific context previously only elucidated
through experiments and molecular dynamics studies.
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